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PROPAGATION OF DISTURBANCES ABOVE THE FLOW DURING
THE INTERACTION OF A HYPERSONIC FLOW
WITH A BOUNDARY LAYER

a

V.\Ya. Neyland
o
(Moscow)

ABSTRACT. It is shown, that for a hypersonic flow
with moderate or strong interaction, disturbances created,
for instance, by a base section or some obstacle are propagated
to the front edge of the body. No local areas with very )
large pressure gradients can be formed in the flow. It is
.then possible for zones of separation to form, having a length
on the order of the body size and described, to the first
approximation by boundary layer equations. From a mathe-
matical point of view, the problem reduces to establishing
the nonsingularity of the solution near the front edge, and
finding proper solutions which satisfy the boundary conditions
at the trailing end of the body. It is shown that, with weak
interaction of the hypersonic flow with the boundary layer,
there may be formed short areas of flows with free interaction
and local-inviscous flows with large gradients of pressure,
at the limits of which the disturbances can be transmitted
above the flow. ’

1. The general problem of steady motion of a body. in a viscous and
thermoconducting gas is described by Navier-Stokes equations. These equations
‘are elliptical. Disturbances, created at some point of the flow, reach all

other points, at least in principle.

However, at large Reynoldé number, the generally accepted method of

solving problems of aerodynamics is the application of equations for inviscous
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gas (Euler equations) practically everywhere, with the exception of some narrow
areas where allowance for viscosity is important. In particular, such areas
are localized near surfaces of bodies (boundary layers). The equations for
boundary layers are parabolic (Prandtl, 1904). With fixed boundary conditions,
changes in equations in the area below the flow have no effect on the solution
in the area above the flow. Hence, it was considered for a long time that at
supersonic flow around bodies, in the absence of separation, the disturbances

are not transmitted above the flow.

Still, in a number of cases, the boundary conditions are unknown before-
hand, not only for the boundary layer but also for the inviscous external flow.
They have to be determined by concurrent solutions, carried out simultaneously
for both areas of the flow. Such a class includes, for instance, flows with

"free interaction" [1,2] and with strong interaction [3, 4].

Although equations describing the flow in various areas prove to be hyper-
bolic and parabolic, the data on boundary conditions set below the flow should
include also the area above the flow. A boundary condition which has to be
determined by integration of equations has an integral character, and the
problem becomes really of an integral-differential nature.

We have to note, however, tha? the information is not complete, as for
elliptical equations. The class ffom which possible solutions are selected

is more narrow. Solutions of this t&pe have been obtained in [2, 5, 6].

Studies described in [2, 5, 6] dealt with supersonic flows (M ~1,R—o0, [41
where R -~ Reynolds number) , in the area of free interaction around the point
of separation on a smooth surface in front of the base section, and in the
area of attachment of the zone of separation., The problem was solved through
asymptotic analysis of solutions of complete Navier-Stokes equations, utilizing
the known method of local asymptotic expansion. For these problems, the ‘char-
acteristic longitudinal dimension of the area in which disturbances penetrated

above the flow amounted to &, and the pressure disturbance was Ap[ps ~ R™4,




Studies [2, 5, 6] have shown that the presence of free interaction sig-
nifies the transfer of disturbances above the flow; this fact leads to the

necessity of previous selection of the appropriate method of solution.

It is of interest to consider flows in which the areas of free interaction
are large, on the order of dimensions of the body. Such a type of problem is
represented by a hypersonic flow of viscous gas around a slender body (for
instance, a plane) with the value of the known interaction parameter A=

M (dS/dr) = 1. The known [3] self-modeling solution for strong interactions is
valid only for a semi-infinite body; strictly speaking, it is applicable to
finite bodies only for especially adopted boundary conditions at the trailing

end of the body.

Another example is the problem of a blast of moderate intensity through
the surface of a slender body in a supersonic gas flow. If we consider, as
is done in a number of works, such as [7], that the wvelocity component of the

gas normal to the surface of the body is small in comparison with the velocity

of the incoming stream but, nevertheless, considerably exceeds the correspond-

ing component in a viscous boundary layer, then in the first approximation we
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can utilize the model of a thin inviscous layer of the flow. The pressure

distribution in a thin layer is determined by disturbances introduced by this

layer into the initial supersonic flow. Because of a small thickness of the F
gas layer, the transfer of pressure across it is nonexistent in the first |
approximation, and the Euler equations degenerate into boundary layer equatioms
without viscous terms. It can be shown for the same problem‘that the effect
of the trailing end of the body should be considered along the whole body, up
to the leading edge.

2. We shall consider the flow of a hypersonic stream of a viscous thermo-

conducting gas around a slender body. The Reynolds number calculated along

the length of the body Z, velocity of the incoming stream ui,vCharacteristic
density wvalue Pys and the viscosity coefficient My at the surface of the body B
is R,>1 . Then, the disturbed area of the flow can be divided into an invis- :

cous flow and the boundary layer of thickness 8 ~ IR;~'%: .
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Further, we shall consider that the thickness of the body 62 is of the
same order as, or even smaller than, § (for instance, 62 = () — a membrane or
a thread). In this case, the pressure distribution on the outer limit of the
boundary layer depends on changes of thickness of the boundary layer displace-
ment and, at the same time, it greatly affects the distribution of the thick-
ness of displacement. This is flow with free interaction. The extent of the
flow area with free interaction depends substantially on values of the numbers
Ml and R2.

In supersonic flows (M*—1)" ~ 1 the size [2, 5, 6] is on the order of
[R;™"s . We shall note that at M, v 1 the pressure gradient induced by the

1
boundary layer for specific points of flow (point of separation, attachment,

ete) , influences the boundary layer only to the second approximation. Hence,

there is no free interaction in the larger part of the body.

We shall-consider the flow with free interaction at #i—>® for character-
istic cases of flow around a corner point or a base section, and also the 142
points of separation and attachment. For all these flows at moderate super-
sonic velocities, the scales of coordinates, flow functions, equations, and
boundary conditions were the same (with the exception of the initial and final
condition). We shall show that, at small values of the known parameter of
hypersonic interaction % =%M:/R:»<<1 , the situation is the same for

hypersonic flows.

Let us consider first the flow near the point of separation on a flat
plate at M;>1. Let the gas enthalpy at the surface of the body be of the

same order of magnitude as the'enthalpy of the drag (although it may amount,

for instance, to 0.1 of the latter). 1If far from the point of separation

+<<€1 , then the pressure gradient}induced by weak interaction is (I/p,)dp/dz ~ y-

Following [2], we shall estimate values of the pressure gradient which should

exist near the point of separation;}if the latter is located the distance 7

2-‘/3‘

from the leading edge. In the mainnbart of the boundary layer 8/l ~ R
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Here An — is the change of thickness of the flowlines. At the wall, the
velocity is zero. Hence, near the surface of the body, in accordance with

equations of the motion
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Let 8; be a thickness of the area 3 in which Au; ~ y, ; then, U ~ Ui X

X (8s/1)R,~2The thickness of this area changes by the order of magqituae
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It means that the displacement thickness of the whole boundary laye; in the
main term changes by.§;// . Then, in accordance with the hypersonic theory of
small disturbances (for Ap/pi<€$1) we obtain Ap/piﬂv(éalioﬂf:, where xs —_
the unknown longitudinal dimension of the perturbed area. If the flow streams
in the area 3 before the point of separation are to pass into the area where
the pressure increases, there should be in the area 3 at least some signifi—
cant viscosity forces: pﬂh”/x{ﬂv;hun/éf . This last condition makes the
system of interrelations for the scale .Ap/p“zh,bhah closed; it enables us

to obtain the following relations at X <51 :

63/1 ~ M"ltRz“‘/u = X'/dRz_?l, .’E;;/l ~ xa/‘ = MA‘I‘RZ—#“ B (2.1)

u; / Uy ~ MhR,"ls == X‘/A, ,Ap /p‘ ~ M“/sz"/c ~ x‘/z’ An/l ‘~ x‘(’ngllz,_ (2.\2)

Utilizing the methods in {2], we can easily obtain the complete system

of equations and boundary conditions, closing the problem. They are fully




analogous to those obtained in [2] if we replace e=R"% by x =M, /R’ , 1t
follows from this that the theory developed for M. ~ 1 is limiting for
hypersonic velocities at x—-0.

Fully analogous results can be easily obtained for flows in the area of

attachment, and near the base section, by following [53] or [6]. The character-

istic feature of these flows is that the propagation of perturbations above
the flow occurs at short distances only, with the formation of areas having
large gradients of pressure. Further increase of the pressure gradient may
lead to the appearance of locally inviscous areas of flow. Locally inviscous

flow around the base section was investigéted in [8].

3. The situation changes basically if O(y) - O(1) . It is apparent from /43
(2.1) that the scale of the area of free interaction z/!/—0(1) . And it
follows from (2.2) that the division of the boundary laye;’into subareas pfﬁ
different scale disappears, since An/l-~ §,/1:

It follows also from Ap/p *wa-+-1. In this way, the whole boundary

layer begins to participate in théyprocess‘of free interaction.

We shall show that, at =1, there can be no region of flow in which the
pressure gradient is larger in order:of magnitude than the gradient induced

on the body by free interaction.

Let us assume that near the base section or in front of the point of
separation there is a drop of pressure Apﬁgﬁ (we are not considering the
case Of.Ap/pég,ib since in flows of rarefaction it is impossible, and in flows
of compression such values of Ap/p do not occur because of the displacement

of the poinﬁ'of éeparation above the stream, a§2will be shown below).

If the induced gradient of pressure is larger by an order of magnitude
than the initial one, then the dimensions of the perturbed area Ax should
satisfy the condition Az/!<€1. For jﬂ;§>i and y=1 in the initial boundary

layer




D ~ 0T, o ~ P, (dd/dz), ~ =

In accordance with the equation of motion ( puu. ~ p. ) disturbances of

velocity and pressure are interconnected by the relation

U~ Au~ (Ap/pit)'h

This estimate is also valid for Ap/p,<<1, since near the surface of the
body one can always find a layer in which velocity perturbations are of the
same order as the initial velocity. Just as for flows with weak interaction,

the complete change in thickness of the boundary layer is equal in magnitude

to the thickness of the layer in which the velocity changes by an order of

magnitude. For the thickness of this layer, we have the relations

. 3
y~ 2, A6~l( p)
a1 qui

Since Ap/pixi, then AS/Azx=<Ct . Utilizing the external boundary con-

dition and the obtained estimates

Ap ds\? 1/ ds\  Ab7? 2 /ds A5
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But the dimension of the perturbed area cannot be larger than the char-
acteristic dimension of the body. It follows from this, therefore, that
Ax ~ 1.

In this connection, the solution of the problem for a boundary layer
under conditions of free (moderate or strong, x¥=1) interaction cannot be
fully determined by the initial conditions and the boundary conditions on the

outer edge of the boundary layer and on the body surface. There should be




also branches of the solution making it possible to satisfy the boundary con-

dition at the trailing end of ;he body which, as will be shown below, can be

imposed, for instance, upon the pressure value.

In conformity with the usual estimates for a hypersonic boundary layer at /44

X = 0(1) we take the following codrdinates and asymptotic expressions for the ‘

flow function:
s=atll, y=yp°/l7 = (4a® ] sl
u(z° % My, Ry) = ullu(z, y)+...]1, v°(° % M, R) = ‘
= wlt{v(z, y) +...]
(a5 1% My R = poyMev[p(a y) + . ]y p°(@ 4% My Ry) =
= 0lp(e, ) + .. ]
Ho(z® %, My, R = (O [H(z, y) +...], (e y% M, R) = |
= p[nley) +...1
(3.1)

Here the degree signs at the top signify dimensional quantities.

Substituting (3.1) into the complete Navier-Stokes equations and making

the limiting transition Mi— 00, Ri—>® at 4 =0(1) we obtain the equations

(u 0u+ 0u,).=_ 0p+ 7} (“a_u)

=

dx v dy -0z oy \"- dy
dou  dpv v—1/7 - u?
i —-._:O’ — (II""————)
ox + dy P v Z)° ~
of oH ) 2
ax dy oy \ ¢ dyl/  dy, o /0y 2 (3.2)

The boundary conditions are

u(z,0) =v(z,0) =0, H(z,0) = H,

ulz, 8) =1, " v(z,8) =do/ds, H(z,0)=") (3.3




Here, the outer edge of the boundary layer y = § is precisely defined,
o(x, 8) = oo,, since the flow rate of gas in the boundary layer is negligibly
small in comparison with the flowrate in the inviscous area of perturbed flow,
whereas the thicknesses may be of the same order. It is just this difference
in the flowrate order of magnitude that enables us to develop the correct

theory of the boundary layer.

For the solution of the problem on a computer, it is convenient to

introduce the following variables:

x v
g={padz, .m=(28)"*[ody
0 i 0

u=f(&m), ‘g=2I, (zy) =72 En)

(3.4)
Then the equations assume the usual form
(NF") + 11" — B} (g — 1) = 25 (1" — 1'T) |
Nl, “/, 1 _1 /I.,__vl'____'l
(Se) +7e +.~§[N(1 —0—.')}ff’.].——2s(fg~ re) 5
The boundary conditions are 145
8 0)=7E0)=0, f(500)=1 g&0) =g, gEowx)=1
v(g’oo)=£i, N = Pu , p== 2"{ 4 -
C dx (pu)2 (y—1) (g—1?)
=[fe—=i7° . Y—1 dlnp
o [ = ], B(g)= . JTEE
ey PB4 VT
w=v o) =5 o] e ran]
: - ‘ (3.6)

-

The indices 1 and 2 signify parameter values on_ the outer side of the
boundary layer and at the wall, respectively. For the calculation, it is
necessary to consider the flow in an inviscous shock layer. Following the

hypersonic theory of small perturbations, as in [3], we shall introduce the




following functions and coordinates for the shock layer:

z? = lo-’L‘, y° = —cl°y, u® = u,° H + TZU(x1 U X) +.. ‘]
P =yp MR (2, 0) Fees 0T =00R(Z Y X) e
v =V (z, y, x) + ... - (3.7

The system of equations and boundary conditions is

OR  ORV ov AW
ax+ (7]/ oz + dy (7_1/ O
: i p as
D — - v = V ~dz
’ | L 2yy? dgn?t_ y—1
yP[x,a(x)]fy+1('Ex‘) vy+1

R[x,g(x)]%[:_;i'*'(y.ii)%(%yz]-f
2_deg, 1(dg\'2}-.

RACE

'V[x,g(x)]=m'&? "

(3. 8)
where y = g(x) — equation for the form of the shock wave.

For practical calculations, sufficiently accurate results are obtained

by the tangential wedge method

N ST 2t T R e R
p@fﬂ+4gﬁwmﬂww[ n® ]}

% 4

(3.9)
It is necessary to remark herely.-that at y— oo , the parameter X vanishes
both from (3.8) and (3.9). The comﬁiete problem for dimensionless wvariables

ceases to depend on Y.

We shall clarify now the character of the nonsingularity of solution at

different values of the interaction parameter ¥X.

10




Let the boundary condition determining théknecessary branch of solution
be set at x° = 7°, i.e., at X = X, = 1. If the point of separation lies there,
then we have f2" = 0. If corner point 0 corresponds to it, then the pressure

on it is the given pressure.

We shall show at first that if we managed to find7at least one solution
for which, for instance, f2" (%x0,) = 0, then there is also a group of transfor-
mations which allow us to satisfy the condition X, = 1. For this purpose we

shall introduce the transformation

1 14 .
E=0b&, M=N"4 P=— P4, p=£bi, ne==1uy, h=h,, Ux='~f("’1)4
y=Ubhy, w=20b%, 3=7Vby, f=f g=¢ -
; ” ‘ o (3.10)
where b is the undetermined constaht, and for (3.8)
: 1 1 |
R=R41 g=b/2g4) P=7P41 V=—€—'V4 (3.103)

With this change of variables, all equations and boundary conditions ex-
pressed in terms of new variables have the same form as (3.4)-(3.6) and (3.8),
(3.9) in o0ld variables. The only difference lies in the fact that the value

of X4 is known beforehand, and the coorxrdinate x, of a singular point is not

4
given. Setting X arbitrarily, we obtain a solution (numerically or in series)
with a singular point at some value x40(x4). In accordance with Formulas (3.9)

and the condition xo = 1 we obtain

1="bza(y), x=7Vbx% (3.11)

Then, the first formula gives us b, while the second — provides a value of

X corresponding to the given X4

= X [?«o (%) ] -""/‘W (3.12)

il
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If y.>1, then X40 does not depend on X4’ and Formula (3.11) gives
a solution for direct as well as reverse problems. If, however, % ~ 1., then we
can solve without adjustment only the reverse problem of finding X at a given
X4a For solution of the direct problem (in which ¥ is given), it is necessary

to choose X4 such that the condition (3.12) is satisfied.

The existence of a group of transformations (3.10) demonstrates the fact
that, at least at X = ®, there cannot be nonself-modeling solutions, which are
not terminated by a singular point (for instance, p,= 0) or place, where boun-
dary conditions are changing, and which continue for all § from O to « when
the given boundary conditions are maintained. As a matter of fact, if such a
solution existed, then in the presence of (3.10) it could be transformed into
a self-modeling solution, but it is defined in a unique manner. Thus, in order
to establish the nonsingularity and existence of solutions of the requisite
type, it is sufficient to demonstrate the existence of nonself~modeling solutions

even at §<€1 .,

In the neighborhood of § =0, the indeterminacy of the solution can be
established by means of a coordinate expansion. Using a computer method
analogoﬁs to that developed in [2],the solution of the problem can be extended
to actual finding various branches of solution at finite values of § up to the

corresponding singular points.

It is simplest to establish the indeterminacy of the solution for X = <,
since then it is sufficient to show 'that, in addition to the known self-modeling
solution, there is also a nonself-modeling one. Further, we shall utilize
(3.9) and ¥ =

| 4 , A,
f&m)=fo(n)+ E““A—:fx(n)-%- ver 8(Em)=2g(n)+ E“*‘Zi-gx(n)-i—-..

A ~ ' By
p(§)=-—o'+Al§a+-.., v,(§)=-:g-+;31§a+'l.+._.
o F N (3.13)

12




Substituting (3.13) in the initial equations and boundary conditions, we

obtain
vy—1

(Nofo”)* + fofo” -+ (go—fo"?)=0

('N; go'),-f- "fogo'-i-i[No(i‘-i) fo'fo”],=0
No=[(go— fi"*)/ &:]°*, fo(0)= £’ (0) = 0, g(O) 8a, fo' (00) =1, go(°°)—- 1

3 1.
By=—=Dli do= YT By, R j (60— fi")dn, D=go
: B (3.14)
This part represents the known self-modeling solution for strong
interaction *
(Nofx"- + Nx]‘o”)’ +foft”v A” - 2fo’fx’)"‘ )
£ 7 ” 'Y—i U4
—2(a+41) (f'f —fo"f1)= (a+41) (80— fo?)
N N 1 1
( g +—-Lgo > -i'fxgo'-i-fogx’-l—*é-[]vo(i—“—) fo'f" 4+
Ao T 2L N e/ (3.15)
l 1 g1 1 1 4 II. ! ‘
+ Ny (1"’5—')11 fo +N1(1“'—;) fo‘fo ] —2(a-41) (f'ei —1180")=0
g . 9 F. 1. ,
Mi=(o—O)NE—S0m LO)=1/(0)= i ()= 81(0)=81() =0
. 5
Ar=(y+1)BB, . B,=D[F1—i——rov2(a+1)]_i
Fi="T (@1 — 211y dn
"o . (3.16)

The system of Equations (3.15).:_15 linear, but nonhomogeneous at a > - 1

[a < - 1 makes no sense in view of (3.13)].

The linear homogeneous system (3".16) for coefficients A, Bl has a non-
trivial solution only in the case where its determinant is equal to zero.

This provides the condition for determining the parameter a

13
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¢ = [10F,(a) — TFo] | 4[Fo—Fi(a)]

Numerical calculations give a &~ 49.6 for w =0 = 8, = 1. Let us assume
that a for the requisite range has been found. Then Al’ Bl can be determined
within an accuracy of an arbitrary constant factor._ Its magnitude determines
the wvalue of xo,vthe coordinates of the singular point and its sign gives the
choice of the type of singular point. The given transformations lead to the
following form of the similarity rule for the coefficient of pressure at the

point of separation:

HZO i o
Cp=2 (m‘;‘) D4o%4c

where Pio’ 40 functions of 8y3 Vs and ¥ can be obtained by numerical solu- /48
tion of the problem. At g -— oo, the dependence on ¥ vanishes, and the second

limit for Cp is obtained, apart from the one found in [2] for X = O.

The precedipg results lead to an important conclusion for the asymptotic
theory of separated flows if the separation and attachment of the flow occur
on a smooth surface as, for instance, in the case of separation in front of a
panel, not beginning at the leading edge. If separation does not start at the
leading edge then, as in the case of M/ ~ {1, the pressure in the whole area of

separation and the ratio of the longitudinal dimension to the tramsverse di-

mension are of the same order of magnitude as in the area of free interaction
near the point of separation. But in the given case M;— o, %=1 the charac-

teristic longitudinal dimension of the area of free interaction is of the same

order of magnitude as the length of the body, as has been shown. From this,

it follows that the flow in the whole zone of separation (the length of which
cannot be larger than the body dimensions) is described by these same equations
of the boundary layer in the first approximation. This holds everywhere with

the exception of small zones on the order of the boundary layer thickness

(vicinity of cornmer points, etc.). This means that, until the point of

separation reaches the leading edge, the angle of inclination of a panel should

be on the order of 0(T). If it is larger, the sepdration should begin from

14
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the leading edge. At M, ~ { the areas of free ihteraction have the length
O(R,~) [2]. Hence, even at angles of inclination of panel 0(l) the separation
may not begin from the leading edges, and equationé=pf flow inside the separa-
ted zone do not reduce to the Prandtl equations [6], even in the first

approximation.

We note that Formula (3.10) determines the similarity rule for ¥ = o,
valid for flows of compression and rarefaction, which will be considered below
4. We shall carry out briefly a quélitative analysis of the results

obtained for the case of ¥ = o, using a scheme of integral curves of the
Problem (3.5), (3.6) on the pf plane (Figure). Line 1 represents the known
self-modeling solution (3.14). Below
this line, there is a family of non~
self-modeling solutions corresponding
to A1 < 0 (3.13), at which p = 0 for
finite values of &, since p < 0 has no
physical sense, and p > 0 at § » « is
impossible because of the existence

of the group (3.10), as was shown above.

Above the line 1 in the figure there

is a family of curves corresponding to

A1 > 0, and to the decrease of fz" to
zero along the dotted curve 2. This is the line of separation. For each curve,
one can calculate x(&) from the Formulas (3.4) and (3.6). Line 3, along which
x = 1, has an additional boundary condition for flow on a body with finite
length and a flat surface. The intersection of lines 2 and 3 determines the
value of the base pressure, corresponding to the flow separation (f2" = 0)
just near the base section. If the base pressure coincides with the value of
p at the intersection point of curves 1 and 3, then the distribution of pres-
sure oﬁer the body is the same as in the self-modeling solution. A part of
the curve 3 lying above the line 2 corresponds to the location of the separa-

tion point above the flow from the base section. As was pointed out above,

to obtain the whole family of curves for both the nonself-modeling solutioms,

15




it is sufficient to find one curve for each, and the remaining ones are ob~-
tained from (3.10). Then, to each value of the base pressure there éorresponds
one integral curve, on which this base pressure is reached on line 3. We

shall note that at (p - po)/pO = g << 1, where Py = OE_l, Formula (3.13) gives
a rigorous first approximation relative to € for distribupion of the parameters

on the whole body to x = 1,

As was remarked earlier, for the case of X~ 1 or for a more complex form

of the body, adjustments are necessary,

One more consequence arises from results of the numerical solution of
(3.15). Since the value of a in (3.13) is large according to the calculations
performed (a v 50 for w =0 = 8y = 1), the deviation of the integral curves
from the self-modeling solution is hardly noticeable, and then occurs very
sharply. This feature explains why, in the application of insufficiently
accurate integral methods for solving problems with free interaction — for
instance, the Crocco-Lies method — it is necessary to introduce the concept
of subcritical and supracritical boundary layers, and a step-wise transition
from the regime at which there is no transfer of perturbations above the

stream, to the regime with the transfer of disturbances above the flow.

In conclusion, the author wishes to thank V. V. Sychev. for a critical

review of the problem. .
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